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ABSTRACT In considering supercoils formed by closed 
double-stranded molecules of DNA certain mathematical con- 
cepts, such as the linking number and the twist, are needed. The 
meaning of these for a closed ribbon is explained and also that 
of the writhing number of a closed curve. Some simple examples 
are given, some of which may be relevant to the-structure of 
chromatin. 

It is not easy to think clearly about the way in which double- 
stranded DNA twists into various coils and supercoils, The 
subject has been greatly clarified by the mathematician F. 
Brock Fuller in a paper entitled “The writhing number of a 
space curve” (1). This paper is written in a clear, concise. manner 
but its very compactness makes it difficult to grasp for the av- 
erage molecular biologist. This note is an expansion and clari- 
fication of part of his paper. See also an earlier paper by White 
(2) and a further paper by Fuller (3). 

The reader should recall two elementary facts about helic& 
and handedness. The first is that a right-handed helix is right- 
handed from whatever position one looks at it. If it is turned end 
to end it stays right-handed. The second is that if a right-handed 
helix is viewed in a mirror, or inverted through a center of 
symmetry, it becomes left-handed, and vice versa. 

The basic ideas 
The essential concept we use is that of a ribbon. This ribbon can 
be thought of as a pair of lines-its two edges. Mathematically 
these are considered to be a minute distance apart. In reality 
the ribbons we will be considering will have finite width but 
we shall have the physical restriction that our ribbons cannot 
interpenetrate. We shall mainly be considering closed ribbons, 
which join back on themselves. It is assumed that each edge 
joins only with itself-and not with the other edge as in a 
Miibius strip. To underline this and to relate our ideas to the 
physical structure of the double helix of DNA, whose two chains 
run antiparallel rather than parallel, we put arrows, all pointing 
the same way, on one edge of the ribbon (in an arbitrary chosen 
direction) and label the other edge with arrows in the opposite 
direction. If we have occasion to break lines and join them we 
can only join lines pointing in the same direction. That is, we 
assume that we cannot join, by chemical bonds, a DNA back- 
bone of one polarity to one of opposite polarity. 

The line running along the center of the ribbon, which we 
shall call its axis, is also important. For a closed ribbon it joins 
back on itself. It does not have a direction. 

Now we have to grasp three distinct but related concepts. 
These are: (a) the Linking Number, L; (b) the Twist, T; (c) the 
Writhing Number, W. The first important thing to realize is 
that the first two, L and T, are properties of a rfbbon. They 
have, in general, no meaning for a single curve such as the ar8 
of the ribbon. The Writhing Number, on the other hand, is the 
property of a closed curve, such as the ribbon axis. Its value 
depends on the exact shape of the curve in space, but not where 
the curve is in space (“is invariant under rigid motions”) nor 
on the scale (“invariant under dilatations”). The mirror image 

of any curve has a writhing number of the same magnitude but 
of opposite sign. Thus, the writhing number of any curve which 
is its own mirror image (such as a circle) is necessarily zero. A 
curve which has a center of symmetry also has a zero writhing 
number. 

The essence of Fuller’s definition of the writhing number is 
the equation: 

W-L-T 

In short, although both L and T are properties of a ribbon, their 
difference (where they are suitably defined) is a property only 
of the ribbon’s axis and not at all of the way in which the ribbon 
is twisted about that axis. 

The meaning of L, T, and W 

We must now state more precisely what is meant by L, T, and 
W. 

The linking number, L, is roughly speaking the number of 
times the closed line along one edge of the ribbon is linked, in 
space, with the closed line along the other edge. For example, 
a ribbon forming a simple (untwisted) circle has linking number 
zero, since the two distinct circles formed by the edges are not 
linked in space. The linking number for a closed ribbon is 
necessarily an integer but as we shall see it can be positive or 
negative. It is unaltered under all deformations of the ribbon 
which do not tear it (“which deform it smoothly”) and is 
therefore a topological property. We shall not define it more 
precisely here but later in this paper we give an algorithm for 
calculating it. 

In order to gi\;e a sign to the linking number we must, in ef- 
fect, put arrows on the two edges of the ribbon. We have al- 
ready chosen to have these arrows run in opposite directions on 
the two edges because of the structure of DNA. [Mathematically 
this is not essential. In Fuller (1) the arrows are defined to run 
in the same direction.] Then a strip which is twisted in a 
right-handed manner will be given a positive linking number. 
To make the sign convention quite clear we illustrate two strips, 
one right-handed and one left-handed, in Fig. la and b. We can 
deform these figures to give the arrowed lines shown in Fig. lc 
and d, which also illustrate the convention. Fig. Ie illustrates 
a (deformed) ribbon with a linking number of +2. The mirror 
image of a ribbon, or the ribbon inverted through a center, has 
L of the same magnitude as the original ribbon but of opposite 
sign. 

We must now tackle the twist 2’. The exact definition, fol- 
lowing Fuller (l), is given in the &pen&r but at this stage all 
the reader needs is an intuitive idea of the twist. 

Note first that a simple bend (Fig. 2a) does not introduce a 
twist, nor does the bend shown in Fig. 2b, in which the de- 
formed ribbon lies in one plane. On the other hand the twisted 
ribbon shown in Fig. 3c clearly has a twist under any definition. 
The wafts of twist are chosen so that the stretch of ribbon shown 
in this figure, which goes round 360” (that is, 2?r radians) is 
defined to have a twist of 1. Since the twist is right-handed it 
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Right handed Left handed [L=+& ) 

FIG. 1. Line drawings to show the sign convention for L. The pair 
of lines in (a) can be regarded as the two edges of a ribbon on which 
the arrows have been marked in opposite directions. (6) The mirror 
image of (a). Drawing (c) is topologically the same as (a), while (d) is 
the same as (b). If we reverse the direction of an arrow on one of the 
chains of a pair we alter the sign of L. (e) A  pair of lines for which L 
= +2. Compare (c). 

is called +l. The mirror image of a ribbon has a twist of the 
same magnitude but opposite sign, so that the (left-handed) 
reflected image of Fig. 2c has the twist -1. 

The twist, T, of a ribbon is the integrated angle of twist (di- 
vided by 2s) along its length. For a closed curve it need not be 
an integer and in general it will not be. T is invariant under 
rigid motions and dilatations but its value depends on the exact 
shape of the ribbon in space and it is, in general, altered by ar- 
bitrary deformations. It is thus not a topological property but 
a metrical one. To illustrate the value of T for a slightly more 
complicated but still simple case we consider the twist of a 
ribbon wound flat on a cylinder and going round N times in a 
right-handed helix (see Fig. 3a, where N = 2). Then the 
mathematical definition of twist leads to the value 

T = N sin LY 

where (Y is the pitch angle of the helix. 
Care must be taken over the units of twist. One can easily but 

incorrectly assume that if N  = 1 and cr is small then the angle 
of twist is approximately equal to (Y. This is incorrect. The angle 
of twist is 2~ sin a = 27r cr. However the twist T, which is the 
integrated angle of twist divided by 2*, does approximate to 
cy in this case, (Y being measured in radians. 

The twist of a ribbon wound flat on a cylinder tends to zero 
if the axis of the ribbon tends to a circle (each turn approximates 
to a simple untwisted circle) while the twist of a ribbon wound 
flat on a cylinder of vanishingly small radius (which gives a 
ribbon like that in Fig. 2c) tends to T = N. The twist for more 
complicated shapes must be calculated from the definition in 
the Appendix. 

From the way that T is there defined it follows that in cal- 
culating it for a closed ribbon, by travelling along it, one can 
do so in sections. Thus, if there are “points” A, B, and C on the 
ribbon then one can calculate the value of T for the section AB, 
that for BC, and that for CA. The total T will be the algebraic 

T=+l 

a b 0 

FIG. 2. (a) A  ribbon which is bent but not twisted. This is also true 
for (b). In the latter case the ribbon lies entirely in the plane of the 
paper. (c) A  ribbon which is twisted but not bent. 

L=+2 
k=o” 

L=O 
T>O < T=O 

a 
b c 

L=+2 L=O 
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I-I’ _..- .._, 
d e 

FIG. 3. (a) A  short length of ribbon in the shape of a right-handed 
helix having two complete turns. To aid visualization a cylinder has 
been drawn in. The pitch angle of tbe helix is 01. The broken lines show 
how the two ends of the ribbon can be joined to make it a closed rib- 
bon. (b) A  closed ribbon wound as a double helix, having two turns 
up and two turns down. Again the cylinder is shown to help visual- 
ization. (c) An untwisted ribbon. Note that by twisting(c) it can be 
deformed topologically into (b). (d) A  closed ribbon forming a double 
helix with two left-handed turns joined along the helical axis. (e) An 
untwisted ribbon. Note that twisting (e) does not immediately give 
,(d) (see text). Although in (d) the helix is left-hand, L is positive for 
this case. 

sum of these three partial values. Notice that the definition of 
T is such that it has exactly the same value, both for magnitude 
and sign, if for the section AB one proceeds during the inte- 
gration from A to B, or from B to A. Thus, not only can we 
calculate T in sections but we can do this in either direction for 
each section, as we please. 

By contrast it is impossible to calculate the value of L in this 
way. L is a property of the entire ribbon and cannot usefully 
be calculated by travelling along it. One must view the ribbon 
as a whole. There is, however, a very neat way to obtain L from 
any outside view of the ribbon or of any topological deforma- 
tion of the ribbon (F. B. Fuller, personal communication). The 
algorithm consists of marking first each edge of the ribbon 
distinctively (say, one with a red line and one with a black one), 
putting the necessary arrows on both of them. One then views 
the configuration (or any convenient topological deformation 
of it) from any chosen point outside the configuration. If this 
point is at infinity the view will be a projection but this is not 
essential. One now inspects each case where the red and black 
lines cross, arbitrarily choosing either the places where red is 
in front of black, or black is in front of red, but not both. Each 
such cross-over can be assigned a value +1 or -1, according to 
the local direction of the arrows on the two lines at the cross-over 
and using the conventions of Fig. 1. Then L is the algebraic sum 
of all these assignments. In a loose way one can see that this will 
work because each cross-over represents a place where a cut 
must be made in one of the colored lines to allow it to be re- 
moved to infinity (either towards one, or away from one, as the 
case may be) while leaving the other colored lines in place. 

The convention in Fig. 1 differs in sign from that of Fuller 
(1) because we have orientated the edges of a ribbon to run in 
opposite directions while Fuller orientated them to run in the 
same direction. Thus, the linking numbers for closed curves 
differ in sign from Fuller (1) but the linking number for ribbons 
agree. 

What Fuller did was first to define L and T for a ribbon, on 
the lines sketched above, and then to define W  = L - T. He 
showed that W  was a property of the axis of the ribbon rather 
than of the ribbon itself. The properties of W, L, and T are 
summarized in Table 1. 

One special result is of interest. It has been shown (1,2) that 
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Table 1. Properties of L, Z’, and W 

L T W 
(linking) (twisting) (writhing) 

Is a property of: A closed A ribbon A closed 
ribbon line 

It is: Topological Metrical Metrical 
Its value is: An integer Any number Any number 

the value of W for any closed curve lying on a sphere is zero. 
Obviously this is also true if it lies on a plane. 

Although in general T can have any value there is a special 
case for which its values are restricted. Imagine that we are 
given a particular closed curve and told that our closed ribbon 
must have this curve as its axis but that we can put our ribbon 
on this axis in any way we please, provided that it has no dis- 
continuity anywhere (i.e., the ends are joined up smoothly). 
Now because the axis of our ribbon is defined, the value of W 
is fixed. No matter how we choose to put the ribbon on the curve 
the value of L (which we are free to select) must necessarily be 
an integer. Thus, the possible values of T will be quantized. For 
example, if we are presented with a closed curve for which W 
= +I.7 then T must have a value chosen from the infinite set 
. . . -2.7, -1.7, -0.7, +0.3, +1.3, +2.3, . . . since L = W + 
T. 

Although L for a single closed ribbon must always be an in- 
teger there are special cases where the effective value of L need 
not be integral, Consider the case of a circular piece of DNA 
which is relaxed in solution under defined conditions so that it 
is the “unconstrained” state. Two sets of authors (4, 5) have 
shown that in practice one does not get a single value but a 
Boltzmann distribution of L, due to thermal effects. Thus, the 
effective value for the unconstrained molecule is the weighted 
average of these integral values of L, and this average will, in 
general, not be an integer. In the same way a solution of su- 
perhelical DNA molecules will have an effective nonintegral 
value of L. Note that while at any moment a particular mole- 
cule in solution will have definite values of L, T, and W, the 
thermal motion constantly changes T and W. Only L remains 
constant with time. 

Some examples 
In spite of all obvious differences between the way T and L are 
calculated it is not easy to obtain an easy familiarity with them 
unless one works through a few examples. We will consider two 
types of example: those which clarify the concepts and those 
which illustrate the pitfalls. 

For clarification the reader might reasonably ask for an ex- 
ample of a ribbon for which L = 0 but T is not zero and the 
converse example where T = 0 and L is not zero. These are 
fairly easy to display. 

Consider a regular left-handed dou&s helix made of a ribbon 
wound flat on a cylinder and having any desired number of 
turns (see Fig. 3b). The double helix is made into a closed ribbon 
by joining the two ends at the top and the two ends at the bot- 
tom, as shown in Fig. 3b. Then it is easy to show that for such 
a structure [which, incidentally, is illustrated in Fuller’s paper 
(Fig. 1 of ref. I)] the value of L is zero. The proof is easy. Con- 
sider a closed ribbon wound on a cylinder in the simple way 
shown in Fig. 3c. Then by inspection we see that .L. = 0 since 
the two edges of the ribbon are not linked. Now imagine that 
the bottom of the cylinder is held still but that the top of the 
cylinder is rotated so that the whole structure is twisted. Clearly 
we can generate the double helix of Fig. 3b without tearing the 

ribbon so it, too, must have L = 0. Equally clearly T is not equal 
to zero since the contribution to the twist is negative as we go 
up one helix and also negative as we come down the other, while 
it can be made zero for the two loops at top and bottom by 
constructing them using twistless bends. In fact (again ne- 
glecting end effects) it is N sin (Y where N is the sum of the turns 
up plus the turns down and (Y is the angle of inclination of the 
helix (1). 

It is not quite so easy to grasp a ribbon for which T = 0 and 
L # 0. In principle one can do this for any closed ribbon whose 
axis has an integral (non-zero) value of W by simply laying the 
ribbon on the axis in such a way that L = W. Then T = 0. 
Probably the best example is one of the simplest: choose a helical 
ribbon like that in Fig. 3a having Q such that N sin LY is an in- 
teger. Adjust the ribbon so that it is not laid flat on the gener- 
ating cylinder but is given a counter-twist to make T zero. Then 
connect the two ends using twistless bends. 

However, a better way to grasp the distinct nature of the L 
and T is to consider once again a ribbon wound flat on the 
generating cylinder as a regular right-handed helix with exactly 
N turns and inclination cr, as in Fig. 3a. How do L and T change 
as cr is varied and N is kept constant? The answer is that L al- 
ways equals N, no matter what the value of (Y (provided it is 
between 0 and x/2) but that the twist, T, is equal to N sin ~1 (and 
is negative if the helix is left-handed ). Notice also that the value 
of L jumps from N to -N as a changes from positive to nega- 
tive; when (;Y = 0 the ribbon degenerates and L is not defined. 
Such discontinuities in L only occur when a change cannot be 
brought about by a smooth topological deformation from one 
curve to the other, as in the cases above (3). 

There is one other example that may be helpful. Can we 
define a closed ribbon for which L = 0 and for which the twist 
is everywhere zero? To do this in the most general way draw 
any closed line (which does not intersect itself) on a plane. 
Imagine a ribbon whose axis lies on this line and whose breadth 
is everywhere perpendicular to the plane. Notice that the ribbon 
is bent, possibly in a very elaborate way, but its twist is zero 
everywhere. This example makes quite transparent the dif- 
ference between bending and twisting. 

We now consider a few surprising examples. As we have just 
emphasized a regular helix with, say, two left-handed turns and 
which has its ends joined together outside the helix as shown in 
Fig. 3a has L = -2. But what is the value of L if the ends are 
joined together by passing the ribbon, untwisted, along the axis 
of the helix, as shown in Fig. 3d? (To avoid end effects the joins 
at top and bottom should be constructed using twistless bends 
and not exactly as illustrated here.) The main features of this 
new structure seem so similar to that of the old one that one feels 
at first that L cannot be too different. Bolder spirits often guess 
that L = 0. However, the surprising result is that L = +2 instead 
of -2. Joining the ends of the ribbon up the center has changed 
the sign of L. This can easily be proved by the algorithm de- 
scribed earlier and indeed is a good example to try one’s hand 
on, but a neater proof is as follows Consider once again a ribbon 
for which L is obviously zero but this time imagine one arm of 
the ribbon on the surface of a cylinder and the other up the axis, 
as shown in Fig. 3e. Now, as before, imagine the bottom of the 
cylinder to be stationary and the top to be rotated so that we 
generate a structure with two left-handed turns of flat ribbon 
on the outside and a twisted branch of the ribbon up the axis 
also having two left-handed turns. We now calculate the 
writhing number. The outside section of the ribbon contributes 
-2 sin a to the twist while the contribution of the central section 
is -2. Thus, T = -2( I + sin cu). Since L = 0 we have W = +2( 1 
+ sin (Y) for this structure. However the axis of the ribbon fol- 
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FIG. 4. (a) A  ribbon with three left-handed helical turns, the 
ends uncrossed. (b) A  similar ribbon having a little less than three 
turns but with crossed ends. 

lows exactly the same configuration as the structure we are 
interested in, illustrated in Fig. 3d. Thus, for this structure, too, 
W  = +2( + sin a). However, for Fig. 3d the value of T is clearly 
-2 sin cr since the central part of the ribbon is untwisted. Thus, 
since L = W  + T we obtain: 

L = +2(1 + Sin a) -2 sin * = +2 

This calculation illustrates in a neat way one of the uses of the 
writhing number, W. It is sometimes easier to calculate L and 
T for a structure having the same axis as the one in which we 
are interested. Then if for our structure of interest, the calcu- 
lation of T is easy, we can immediately obtain L for it, or vice 
versa. 

The reader may be disturbed by the neglect of “end effects.” 
This is usually justified though in real cases the whole ribbon 
must be completely specified. It may come as a surprise that 
any piece of ribbon can always have its ends joined together by 
an extension of the ribbon such that the extension has zero twist. 
This is done by using configurations which bend but are not 
twisted, such as those shown in Fig. 2a and b. Naturally in 
considering end effects one must be satisfied that this can be 
done without causing difficulties with L but in the cases quoted 
above this is not a problem. 

As a second example, consider again a ribbon wound flat on 
a cylinder for a number of left-handed turns, not in this case 
necessarily an integer. However, instead of leading off the 
ribbon in the obvious way, as shown in Fig. 4a, we make a 
twistless bend at each end of the helix and lead off the ribbon 
in the opposite directions, as shown in Fig. 4b. Again the result 
is surprising. If the number of left-handed turns is just under 
3, as for the structure shown in Fig. 4b, then L is not near -3 
nor, as one might perhaps guess, near -2 but is close to -1. 
Again this can easily be checked by the cautious use of the al- 
gorithm given earlier. In fact, the value of L for structures of 
this type is plotted against N in Fig. 5. It will be seen that at each 
integer value of N there is a discontinuity, as might be expected 
since, for example, a structure with N slightly less than 3 cannot 
be smoothly deformed into one with N slightly greater than 3. 
To convert one to the other the ribbon must pass through itself, 
as one can easily verify with a wire model. 

The reader may be puzzled by the fact that L, as displayed 
in Fig. 5, is not always an integer. What does it mean to say that 
when N = -2$, L = -I&? What is implied is that if a very 
large number of structures are joined end to end then the total 
value of L divided by the number of such structures is equal to 
-l%, again neglecting end effects due to making the ribbon 
into a continuous one. If the axes of the ribbon as it emerges on 
the two sides of each substructure are parallel (as in our exam- 
ple) then the value of L per substructure will only be an integer 
if the stretches of ribbon at these two points are untwisted rel- 
ative to each other. For the case quoted above, if N  = -2lh, it 
will be found to be twisted by just half a turn. Thus, in using the 
algorithm to calculate L one should view a whole series of such 
substructures from one viewpoint (see Appendfr) and find the 
average value of L per substructure. Strictly, L has only 
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FIG. 5. The value of the Linking Number, L, is plotted against 
the number of turns, N, for structures like that shown in Fig. 4b. The 
marked point corresponds roughly to the values chosen for Fig. 4b 
itself. Both L and N are shown negative here because the helix has 
been taken as left-handed. For the definition of L, see the Appen- 
dix. 

meaning for the whole of a closed curve and attempts to 
factorize ft fnto sections are only justfffed in special cases. 

The structure of chromatin 
The above example may perhaps be relevant to the structure 
of chromatin. The number of nucleosomes (or beads, or 
v-bodies) on the simian virus 40 mini-chromosome was first 
estimated by Griffith (6). From measurements on gels, using 
the closed, circular, supercoiled DNA of simian virus 40 or 
polyoma virus, several workers (7-9) have estimated that the 
number of “supercoils” is about -1 or -1’/4 per nucleosome. 
This is done by using a “relaxing enzyme” and counting the 
number of different supercoiled species produced by spreading 
them out on an agarose or similar gel. The bands seen are clearly 
discontinuous, reflecting the integral nature of L. What is being 
measured is, in our terminology, the difference between the 
mean L for the mini-chromosome and the mean L for the 
completely relaxed form of DNA (in that medium) without 
supercoils. This estimate also fits with earlier, less direct, 
methods (10-12). Note that at any temperature there is, for 
unnicked, closed, circular DNA molecules, a Gaussian distri- 
bution of L about its mean value (4,5). 

The above example (Fig. 5) shows that a small modification 
to a structure with, in the loose sense, about three “supercoils” 
can produce a value of L, per nucleosome, not far from the 
observed value of -I. Whether this is the true explanation of 
the rather low observed value of L remains to be seen. If a 
model were required for which L was near zero a rather neat 
solution is to have the DNA folded as in Fig. 4b but with N a 
little less than 2 rather than a little less than 3. 

What emerges clearly from the above examples is that, 
without some experience, it is not always obvious how to esti- 
mate the value of L for a structure and that one can easily make 
considerable errors. Thus, L should always be calculated 
carefully. It is fortunately easy to obtain an approximate value 
for a structure by constructing it from a piece of flexible ribbon 
of, say, some dressmaking material. One then simply pulls the 
ribbon “straight” and counts the number of twists. This will 
show if a gross error has been made and can also be used to as- 
tonish one’s colleagues. tiowever, for more exact work a careful 
estimate should be made from a model of the structure itself. 
A “kink” in DNA, for example although it mainly produces a 
bending, will often impart a small amount of twist and this may 
have to be allowed for. Moreover it is not obvious that the DNA 
in the nucleosome will be exactly in the normal B configuration 
unless other evidence suggests this. 

In this paper we have been considering only configurations 
but mechanical properties not at all. An approach to these more 
difficult problems is sketched in the latter part of Fuller’s paper 
0). 
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APPENDIX 
The definition of twist 
For an exact definition see ref. 1, where it is called the total 
twfst number. 

At any point on the axis of the ribbon we define a vector, X, 
pointing along the axis and tangential to it at that point. We now 
define another vector, U, perpendicular to X and passing 
through the two edges of the ribbon at that point (the ribbon 
is strictly considered to have an extremely small width). As our 
point moves along the axis of the ribbon the vector U rotates 
about the vector X. Then the twist is the integrated angle of this 
rotation in radians, divided by 27r, integrated right around the 
closed ribbon. It need not be an integer. If the rotation is 
right-handed the twist is positive. 

The calculation of L for Fig. 5 
The special viewpoint required to calculate L correctly for Fig. 
5 is defined as the view from infinity, perpendicular to a par- 
ticular plane. Let there be M identical substructures, of the type 
shown in Fig. 4b, joined end-t-end without any deformation. 
Consider the axis of the ribbon itself where it enters the string 
of M  substructures and also the axis of the ribbon where it leaves 
the string. Then the required plane is the plane containing these 
two short straight lines. 

Calculate, using the cross-over algorithm, the total contri- 
bution to L from the entire string of M  substructures. Then the 
average L per substructure is defined as the limit L/M as M  
tends to infinity. For this example the above viewpoint always 
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allows one to construct a joining ribbon (of the general type 
shown by broken lines in Fig. 3a) which contributes nothing 
additional to the algorithm for L. 

I wish especially to thank Prof. Fuller, for many useful points made 
in correspondence and for allowing me to quote unpublished work, 
and Dr. Graeme Mitchison of this laboratory for helpful explanations 
and discussion, and in particular for the neat proof shown in Fig. 3b 
and c. I also thank Dr. Aaron Klug and Prof. J. Vinograd for valuable 
comments. 
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